四维空间是一个时空的概念。简单来说,任何具有四维的空间都可以被称为“四维空间”。不过,日常生活所提及的“四维空间”,大多数都是指爱因斯坦在他的《广义相对论》和《狭义相对论》中提及的“四维时空”概念。根据爱因斯坦的概念,我们的宇宙是由时间和空间构成。时空的关系,是在空间的架构上比普通三维空间的长、宽、高三条轴外又加了一条时间轴,而这条时间的轴是一条虚数值的轴。
根据爱因斯坦相对论所说:我们生活中所面对的三维空间加上时间构成所谓四维空间。由于我们在地球上所感觉到的时间很慢,所以不会明显的感觉到四维空间的存在,但一旦登上宇宙飞船或到达宇宙之中,使本身所在参照系的速度开始变快或开始接近光速时,我们能对比的找到时间的变化。如果你在时速接近光速的飞船里航行,你的生命会比在地球上的人要长很多。这里有一种势场所在,物质的能量会随着速度的改变而改变。所以时间的变化及对比是以物质的速度为参照系的。这就是时间为什么是四维空间的要素之一。
【解析四维空间】
什么是四维?现在的说法是三维空间加上时间这一维,构成所谓的四维空间。然而,这种说法是一击即破的。为什么?
我们可以从二维来考虑。一个二维生物(如果有的话),他们考虑所谓的三维空间绝对和我们的三维空间不同——他们会把时间作为第三维,因为他们无法感受这一维的存在。同样,我们现在也走进了这个误区,把时间算做第四维。可能四维生物看到我们在宣扬这种思想时,也在为我们叹息。那么时间算不算一维?在我看来,时间应该是一维,即在多维生物本身的维度之外再加一维,构成新的N+1维空间,而且这样也有助于帮我们解决一些问题,也可以使我们对比三维维度更高的空间加深认识。
有一个更新的构想,即所有的维度都是由时间构成,没有时间,就没有空间,包括最基本的一维空间。这应该好理解,因为没有时间,空间本身的存在就没有任何意义,因为时空本身就是不能分割的整体。那么,为什么一种时间可以形成不同的维度空间?这里,我们可以把时间看成是一种可以分解的常量。时间可以分解,这一句话理解起来可能有点困难。但是,只要想通了道理也是很简单的。要明白这个道理,首先必须了解两点。第一是时空的不可分性,这一点估计大家都明白,离开了空间谈时间,或者离开了时间谈空间,都是毫无意义的。第二点是时间的多样性,这一点了解起来可能有一点麻烦。在日常生活中,我们接触到的都是时间的合成体,也就是各个分时间有机结合形成的一个总的时间体系。可能你们会觉得我是在狡辩,其实不是。只要你们换一个角度去想,一个结果,可能是几个不同的原因形成的。就拿运动来说,我们观察到的一般都是几个不同运动产生的一种运动的结合体,即合运动。关于时间,我们也可以这样去想。我们看到的时间结合体,可以是由物体运动的时间,历史时间(即经历时间)和其他的一些时间构成。而运动时间,我们又可以看成由上下运动的时间,左右运动的时间和前后运动的时间。当然,划分方法是多样的,这就构成了时间的多样性,至于如何去划分,这就要由不同的情况而定。一部分时间对应一段空间。在这个不完整的空间里,时间起到了决定性的作用。
我们之所以是三维生物,是以为这个维度的空间里只存在三维的时间。时间的不完整决定了空间的不完整。我们不能认识其他维度的空间,是因为我们不具备在那个空间里面运动的时间。时间的多样性决定的空间的多样性。同时,因为时间的不同分解方式,注定了我们的三维空间也是相对的,它可以被命名为一维,二维,甚至是任意维——完全取决于不同的分解方式。时间是决定维度的关键,同时,它也是决定低维物体高维存在方式的关键。
让我们看看科学上的说法:低维是空间上读缺陷,它们不具备在高维世界内运动的空间。关于这一点,有一个疑问,那就是我们怎么可以发现这个缺陷。我们认为的低维不存在某一个空间长度,是因为我们无法确定它有那一个长度,也就是我们现在用最好的设备也无法观察到那一个长度差。那么,将来呢?我们现在无法认证,可能将来会有人证明那个低维物体确实属于高维。因此,低维与高维并不存在所谓的空间差。那么,我们如何区别高维与低维?很简单,用时间。用时间去解释任何一个纬度空间,我们也可以认为,低维之所以比高维低级,是因为它们存在时间上的缺陷,它们无法在时间范畴内感受高维的存在。所以,我们要去了解低维或者高维,先要知道它们存在的时间范围。高维与低维之间可以实现转化,道理是很简单的,只要加入或者去掉一个时间单位就可以了。然而说起来很容易,做起来却很复杂,我们对时间的概念都是如此模糊,要想在空间范围类实现时间的转化就更困难。
对四维空间,一般人可能只是认为在长、宽、高的轴上,再加上一根时间轴,但对于其具体情况,大部分的人仍知之甚少。有一位专家曾打过一个比方:让我们先假设一些生活在二维空间的扁片人,他们只有平面概念。假如要将一个二维扁片人关起来,只消用线在他四周画一个圈即可,这样一来,在二维空间的范围内,他无论如何也走不出这个圈。现在我们这些生活在三维空间的人对其进行“干涉”。我们只需从第三个方向(即从表示高度的那跟轴的方向),将二维人从圈中取出,再放回二维空间的其他地方即可。对我们这些三维人而言,四维空间的情况就与上述解释十分类似。如果我们能克服四维空间,那么,在瞬间跨越三维空间的距离也不是不可能。
【物理世界的四维空间】
在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
在狭义相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系
表达公式:ax+by+cz+du=0。
四维空间,也叫做“欧几里得四维空间”,是标准欧几里德空间。它是一个数学概念,可以拓展到n维;四维空间的第四维指与x,y,z同一性质的空间维度。
在物理学和数学中,可将n个数的序列理解为一个n 维空间中的位置。当n=4时,所有这样的位置的集合就叫做四维空间。四维空间和人居住的三维空间不同,因为多了一个维度。
通过一维、二维、三维空间的演变,人们提出了关于四维空间的一些猜想。尽管这些猜想现在并不能证明是正确的,但科学理论有很多是由猜想开始的。现今科学理论一般是基于现象总结规律,而关于四维空间的现象没有足够准确清晰的认识,或者看到了这种现象却并没有想到是四维空间引起的。
当然也可以定义点线面的拓扑空间为第四维、第五维、第六维以至第N维。这在数学公式推理推导中很容易实现,但现实很难对应和想像。
但一般人提到“四维空间”时,却经常会将其与爱因斯坦在相对论中提及的“四维时空”(叫做“闵可夫斯基空间”)相混淆。
在三维空间中是没有办法建立四维坐标的。
就像四维空间的长(X),宽(Z),高(Y),叠(T)四条轴中
叠(T)是完全不存在的,也无法验证的。
要理解四维空间的本性,我们可以利用一种称为“维数类比”的方法。
维数类比是指通过研究 n - 1 维与 n 维之间的关系,来推断 n 维与 n + 1 维之间会有什么样的关系。
扩展资料:
四维生物看到的什么:
肯定的说,四维生物看到的是四维的投影,即三维。就像我们看到的是三维的投影,即二维。
我们想象中的三维世界就是四维生物从三维空间看到的样子。但到底长什么样就算你的脑子以每纳秒十亿T(计算机存储量单位)的速度想十亿世纪都别想想出来,
因为你就是跑不出这个套路:四维投影成三维,三维再投影成二维进入我们的视网膜......但这个套路很难察觉到。
想知道就必须得接过二维,让三维直接进入我们的视网膜,但这需要一个四维的眼睛和四维的空间来支持。
四维立方体是怎么投影成三维的:其实,投影用的灯光也是四维的。以我们的大脑只能想象出三维是怎么投影成二维的,因为你永远跑不出上面那条说的套路。
四维的每条轴都是互相垂直的。高维度太难理解就用低纬度打比方吧:
你在二维的纸上是不可能画出三条互相垂直的线,因为你的纸只有二维。但是让你在三维中画三条互相垂直的线对你来说很简单吧,那再画一条互相垂直的线呢?那就是在四维中。
参考资料来源:
参考资料来源:
(多图流量预警)
如果想要生活在三维空间的人理解四维空间,必须运用的工具就是”类推法“和”投影法“。所以在正式进入四维空间前,我们先了解一下这两个工具。因为如果不理解这两个工具,就无法去想象四维空间,所以即使花一些时间提前了解一下,我觉得也是必要的。
因为我们生活在三维空间,想要凭空想象根本不存在的四维空间几乎是不可能的。但我们可以假设身处二维空间,想象看到的三维空间是什么样子(事实上,我们本身就处于三维空间,所以根本无需想象,就能够建立二维空间和三维空间的联系)。然后通过二维空间和三维空间的关系,从而类推出身处在三维空间如何想象四维空间。
打一个比较通俗的例子,我想知道在四维空间中的两个点的距离是多少?虽然代数上有明确的定义,但由于我们无法直观想象四维空间,所以更无法想象两个点的距离如何计算。于是,我尝试用类推法。
二维空间中两个点的距离是 ,三维空间中两个点的距离是 ,
那么我是不是能够推出四维空间中两个点的距离就是 呢?
这有点类似于”归纳法“,由简入繁,是我们正确思考和解决问题的方式。
2. 投影法
想要在三维空间中去想象四维空间,必须得能够在三维空间表示出四维空间。而我们的屏幕又只是一个平面,也就是二维空间,想要在这篇文章中解释清楚四维空间,难度更加升级,也就是需要一个二维平面表示出四维物体。
我们先来看下面这个图
大家很容易的可以看出,这是一个立方体,但问题是这是画在一个二维平面上,为什么看到的人可以想象出这是一个三维立方体呢?
如果想要在二维平面上表示出三维物体,必须得有一个从三维到二维的映射关系,而这个映射关系如果类似于眼睛的效果,我们的大脑就能够通过二维平面的图形还原出三维物体。
这是因为眼睛的机理就是将现实中的三维空间投射到视网膜上,这里其实就是三维空间到二维空间的映射,大脑经过长期的进化,可以将二维图像还原成现实中三维空间物体的大小,远近。所以,如果在二维平面上按照视觉效果绘制出来,大脑是可以轻易的将它还原成三维物体的。这也就是我们可以通过上图轻易的想象出一个立方体的原因。
而这里的映射关系我们又叫做投影。
但映射有很多种,很多文章或者视频在介绍四维投影的时候都简单的提了”投影“,但如果不能理解到底是哪一种投影,就无法根据二维平面上的投影去想象出四维物体。
比如下图就是一种”球极投影“,假设球体是透明的,在球的北极放置一个投影点,让光源向平面发光,这样就可以在平面上看到除北极点之外球面上所有点的投影了。
球极投影也是一种投影,但这种投影是一种纯数学运算,我们大脑无法直接的将它还原成三维空间的形状。比如我们将上图的球滚动起来,请试着看看你是否能够根据二维平面上的投影想象出三维球体表面?好像很困难吧,因为生活中基本不需要这种变换,所以我们的大脑也没有这方面的进化,这需要较高的空间想象能力和专门的训练。
所以我们在看到二维平面上的图形时,必须先搞清楚进行的是什么投影,我们才有可能将它还原回来。于是我们看一下上面这个立方体的全景,看看到底是如何投影在二维平面上的?如下图。
可以看到,刚才在二维平面上画的图形其实可以想象成在三维空间中,有一个可以透光的立方体,一束平行光打在上面,在二维平面上投影出来的图形。这也叫”正交投影“(Orth. Projection)。正交投影中,远处的线段和近处的线段如果等长且平行,则投影到二维平面上也是等长且平行的的。
这种投影方式类似于眼睛的效果,但又不完全是。因为眼睛的视觉效果叫做”透视投影“(Projective Projection),是一种近大远小的投影方式。
这时候我们将上面的立方体摆正,如果还采用正交投影的方式,我们会看到一个什么样的图形呢?如下图,我们只能看到一个正方形。
但如果我们采用”透视投影“的方式,看到的就是近大远小的效果(关于透视投影的详细描述,请详见我的另一篇回答《线性代数有什么用?学习线性代数的意义在哪?》 )。如下图,我们假设屏幕是X-Y平面,垂直屏幕向外是Z轴,这张图的视角是在Z轴正上方俯看X-Y平面时立方体的效果图。仿佛在凝望一个长方体的深渊一样。
刚才前面提到,”正交投影“类似于眼睛的效果,但又不完全是。因为”透视投影“会呈现近大远小,但如果立方体的边长相对眼睛到物体的距离比较短时,也就是眼睛对于这种远近的距离可以忽略时,”透视投影“和”正交投影“从视觉效果看就没有什么区别了,我们甚至可以用”正交投影“来代替”透视投影“。
这也就是我们即使没有用眼睛的实际视觉效果”透视投影“,而用”正交投影“,大脑依然可以还原出实际三维物体的原因。
到此,理解了上面”类推法“和”投影法“这两个工具之后,我们再来尝试理解四维空间,将会容易很多,我们脑中也要时刻给自己提个问号,我看到的投影到底是什么投影?
为了理解四维空间,我们可以尝试想象一下四维空间中最简单的形状——超立方体,是什么样子的。
四维空间不好想象,运用类推法,我们尝试从一维升到三维,看看升维的过程中到底发生了什么?然后再类推出四维空间中的超立方体是什么样子。请看下面这个从零维升到三维的动图。
前面说到,当我们看到一张投影图时,我们脑子中首先要想这到底是什么投影?前面提到过,这张图是三维空间到二维空间的一个正交投影。
可以看到,从二维升到三维的过程中,其实就是无数个二维平面堆积出来的。我们也可以这样理解,在第三个维度中,平行放置两个二维平面,然后将两个二维平面的四个顶点两两连接起来,就构成了三维空间中的立方体。那类推一下四维空间,我们是不是可以这样想象,在第四个维度上,平行放置两个三维立方体,然后将两个立方体的8个顶点两两连接起来,就构成了四维空间中的超立方体。如下图
我们还要再强调一下,我们在屏幕上看到的这个超立方体是什么投影呢?首先,是将四维空间正交投影到三维空间,然后再将三维空间正交投影到二维空间。
我们知道,三维空间中的立方体是由6个二维平面组合而成,那么四维空间中的超立方体由几个立方体组成呢?由于上图中正交投影连线中交叉点太多,在数立方体的时候非常不直观,在实际中,我们经常会换另外一种视图进行观察。
前面我们介绍过立方体的透视投影视图,也就是在第三个维度Z俯看X-Y平面时的透视效果。如下图,重新copy一遍。
运用类推法,如果我们在第四个维度W俯瞰X-Y-Z空间时得透视投影视图是什么样子的呢?如下图。
和将三维空间透视投影到二维平面一样,上图是四维空间透视投影到三维空间,然后再由三维空间正交投影到二维平面。有一点绕,但事实确实是这样的,两次投影的方式不一样。
从这个视图看,我们能容易的看到共有8个立方体胞。所以,超立方体又叫做”正八胞体“。注意到,四维空间的立方体经过投影到三维空间以后,不一定是标准立方体了。就和我们在二维空间看立方体表面一样,虽然在三维空间立方体的六个表面都是标准正方形,但经过正交投影以后,可能已经发生变形,这和四维空间投影到三维空间是一个道理。
于是我们可以补充上面那张升维的那张动图,看看从零维升到四维的视图是什么样子的。
到这里,我们看到的是四维空间首先一次投影到三维空间,再二次投影到二维平面上展现出来的形状。这个过程中,维度损失了两维,我们看到的也都只是四维物体基于某个特定视角的投影,可以说是管中窥豹。想通过想象还原回四维空间还是非常困难的。那我们如何通过三维空间的直观感受去想象四维空间呢?
坦白说,任何能在纸面上呈现出来的四维空间,都不是真正的四维空间。四维空间中的第四维需要垂直于三维空间中的X-Y-Z,而生活在三维空间的人类根本找不到一个方向可以同时垂直于X-Y-Z,这也是人类为什么想象不出四维空间的原因。就如同生活在二维平面的纸片人,无法想象到会有垂直于纸片的一个方向正在以上帝视角俯瞰他。
前面说了,三维空间其实是无数个二维平面堆叠而成,处在二维平面的纸片人如果想要理解三维空间,就必须有能力穿越无数个平行的二维空间,然后看三维物体在每一个二维平面留下来的投影,通过留在每个二维平面上的投影来想象出三维物体,这是一个穿越空间的过程。当然,纸片人也可以待在属于自己的二维平面不动,让三维物体穿越纸片人所在的二维平面,穿越时留下的动态痕迹可以帮助纸片人想象出三维物体。
如果我们作为纸片人,如果可以通过二维平面上的轮廓想象出三维物体,那是不是就有可能通过四维物体留在三维空间中的轮廓来想象出四维物体呢?所以,作为三维世界的我们或许只能以这种方式去理解四维世界。
于是还是运用类推法,假设有一个纸片人生活在二维世界,有个三维立方体在空间中运动,穿越过我们纸片人所在的二维世界,三维物体与其相交的横截面会留在二维世界中。纸片人能做的,只能是通过二维平面的投影或者横截面来想象出三维物体的形状。我们来看下图。
图中右侧三维立方体穿过二维平面,左侧是穿越二维平面时横截面留下的轮廓。这时候纸片人会看到一个轮廓忽大忽小,从三角形变成多边形,凭空出现又凭空消失。
作为上帝视角的我们如果只观察到左侧二维图形的变化,可以想象到穿越二维平面的三维物体的形状吗?至少我感觉还是十分困难的,但有幸的这种穿越方式我们可以通过数学运算精确的算出三维物体的形状。但是对于纸片人来说,想要想象出三维形状,就非常的烧脑了。
同理,可以想象一下我们在三维空间中吹一个气球,气球从小到大,吹到最大的时候再慢慢撒气,气球慢慢变小。如果没有我们的嘴在控制,这个气球的变化过程其实就是一个四维球体穿越我们所在的三维空间中所留下来的痕迹。
还有一种方式可以帮助纸片人理解三维物体,就是三维物体不能静止,而是有规律的旋转,让三维物体的各个角度都能投影在二维平面,从而让纸片人观察到三维物体各个角度的投影,进而想象出三维物体的形状。
还是采用类推法,我们看看二维纸片人如何通过观察正交投影想象出三维物体的,如下图。
当立方体的表面和投射表面的夹角越小时,投影出来的四边形越大;反之亦然。我们貌似可以通过二维平面的轮廓想象出三维物体,那是因为我们处在上帝视角。对于纸片人来说,几条连接的四边形忽大忽小,甚至发生形变,完全超出他的想象的。
然后我们可以看一下超立方体在三维空间的投影,看看我们是否有能力想象出四维物体的形状?
可以看到,这时超立方体也就是正八胞体,它的每一个胞的三维形状都在变化,通过类比二维平面,我们可以得出当超立方体的一个立方体”表面“和投射的三维”表面“夹角变化时,投射出来的立方体体积也会发生变化。
为什么这里我只说了变化,没有说变大或变小。因为前面已经说过,脑中要时刻清醒看到的是什么投影。这里的超立方体首先进行的是四维到三维的透视投影,和三维立方体到二维平面的正交投影不同,是会呈现近大远小的效果的。也就是说有这么一种可能,虽然夹角小,但是离观察者的距离足够远时,这时大小会互相抵消,就需要看哪个影响因子更大了。
这是我处在三维世界的人所能尝试最大的努力去表示四维空间物体的形状,因为我实在找不到一个方向可以同时垂直于我们所处的空间X-Y-Z。我只能通过人类所能理解的三维空间投影去理解四维物体的形状。但是,有幸的是,我虽然不能想象出四维空间物体的形状,但是可以通过类推的方式,推出四维空间的一些特征;以及,如果我们人类处在四维空间中,会是一种什么样的奇妙体验。
假设我们进入到四维空间,周边的世界会发生什么变化呢?
最后,这篇文章并不能够帮助你想象出四维空间中物体的形状,事实上,这也是不可能的。前面已经多次提到,我们无法找到一个坐标轴,同时垂直于我们生活的X-Y-Z空间。而只是通过类推法和投影法,假设在四维空间中有一束光线能够打在四维物体上,最后投射到三维空间中呈现出来的样子,由此来理解四维空间所表现出来的低维特征。
这就好比我们一直在探求真理,但在严格意义上的真理是不可得到的,我们看到的都只是真理的外在表现。
最后,多图和长文不易,如果觉得对你有帮助,请帮忙点赞,谢谢~
四维空间是在长宽高里加了时间,就是说,如果你在四维空间里,你可以看的以前的你和未来的你。
五维空间指的是两条交叉的时间线。就是你可以看的两种自己过去的人生,和两种不同的未来人生。
六维空间指的是可以在两条时间线互相穿梭,回到过去,达到未来。
七维空间才是一个无数的时间线交叉。
八维空间指的是两个交叉的时间线的无数个时间点的无数个时间线交叉。
九维空间是指无数个时间线交叉后的无数个时间点的无数个时间线交叉。
我们这个空间,可以称为人世之界,简称世界。当然,世界远远小于地球,还是称地球吧。站在地球上(最好是高处,低处是点平面,高处才是面平面),你会感觉你在一个平面基础上的立体空间,在外太空你会觉得自己之前是在一个立体基础上的巨大立体空间,在外太空看地球昼夜交替、月晴圆缺、太阳直射地球位置变化,你会更加明白时间的日月年定义。同理,在立体空间感受时间之后,你需要跳出三维空间被时间维度推动左右的局限认识。通过三维空间漏洞,进行时空穿越切换,摆脱时间轴的束缚,这可以用量子力学开解释。但目前人类只能人为的促使量力进行时空穿越,给没有进化成思维空间生物。简单的说,四维空间就是可以对点线面体时进行转移的区域。奇点就是最初的电,就是空、无、太极、混沌、一,是零维空间。万物皆生于空,间有新物,故称之为空间。人类高于空间而被时间束缚衰老死亡繁衍。空间为宇,时间为宙,故称之为宇宙。整个宇宙都是需要突破的时空壁垒,具备了摆脱宇宙束缚的能力,就成了四维生物,彻底进入四维空间。兼听则明,偏听则暗。我才疏学浅、孤陋寡闻,又贻笑于大方之家了。
人类看到数学三维空间,实际上处于物理四维时空。数学四维空间就是一个物体的截面是一个体,有长宽高。数学三维空间就是体,截面是面,只有长宽。物理三维时空是体,有长宽高。物理四维时空就是伴随时间观念的体。数学与物理不一样,时空与空间不一样。像这样就有了多维度空间与时空,高维度无法想象。一个字一个字打上去的。谢谢
四维空间就是指包括时间A和由长X宽Y高Z组成的包括三维空间在内的空间。
如我们走在一条狭长的隧道里,我们能走出隧道的方向只有两个——前与后;而当我们在走空旷的田野里走时,我们就会有四个方向——前、后、左、右;而当我们的宇航员在太空中表演太空漫步的时候,他的方向将有六个,前、后、左、右、上、下。那么在什么地方我们能找到第七个方向和第八个方向,即第四对方向呢。当然,那只有在四维空间里才能找到。 然而,我们所生活的空间中就存在着这对方向,它们就是时间的前与后。想一想过去所发生过的和未来将要发生的,我们就会发现实际这一切存在着连贯性。
人类属于三维空间生物,想要进入四维空间在理论上来说是十分困难的,但如果借助虫洞,或可完美解决一些根本性难题。
方法:
1.
首先,你要有一个虫洞。
2.
其次,你要能够打开它。
相关事件
事件一: 1960年,在神秘的百慕大海域也发生一件怪事。 在众多旁观者面前,美国的战斗机被云吞噬,就此消失。目击者之一H.维克多回忆说:“当时我在金德雷空军基地的人工卫星站工作。那天气候良好,空中除了一朵云之外,一片晴朗。“五架战斗机从事训练飞行。包括我在内,很多基地人员都在观赏天空的情况,五架战斗机在离海岸800米的上空冲进一朵飘浮的白云中,拼命伸长脖子望着天空,但是它始终未再出现。“基地顿时骚动起来。控制塔的指挥自始至终都是目击者,他也一样没有看到任何物体从云中掉到海上,雷达屏幕上也显示出本来的五架战斗机的影子,突然间地消失了一架,立即引起官方注意,而派出搜索队。“搜索的范围是基地的海岸到800公尺外的浅滩。 “找了又找,连一个战斗机破片也没有发现。那朵白云吞噬了一架战斗机,在不知不觉中消失了……”
事件二:1968年6月1日又出现了一件古怪的事,那天,在南美洲阿根廷首都布宜诺斯艾利斯郊外,两辆汽车正在高速公路上行驶。 一辆坐着律师毕特耳夫妇,另一辆载着他们的朋友——哥登夫妇,他们的目的地是150公里外的麦布市。 哥登夫妇一路领先,不久,汽车的暮色中到达麦布市郊,回头往后一看,毕特耳夫妇的车子不见了,他们还以为律师车子发生了故障,进城后,他俩分头打电话给沿途的村镇,又派人沿高速公路搜索。两天过后,一无所获,哥登夫妇只好报警。 就在同一天,哥登接到墨西哥打来的长途电话,说话人竟是毕特耳律师本人。原来他们遇到了一件不可思议的奇事:当毕特耳夫妇的车子经过雪斯哥姆市后,车子前方突然白雾笼罩,不久,车身全被白雾包围。毕特耳看表,时间是午夜12点10分,就在这时,夫妇俩忽然昏迷过去。也不知经过多少时候,他们苏醒过来,天色已经放亮,车子仍然在高速公路上行驶。 奇怪的是,路上的风光景色,以及行人的穿戴服饰,都和阿根廷不同,停车一问,真叫人大吃一惊:原来他们已在墨西哥城了! 阿根廷距离墨西哥最少也有6000公里,他们怎么会把车子从阿根廷开到墨西哥的呢?律师先生自己也说不出个头绪来。
毕特耳夫妇赶快打电话给阿根廷驻墨西哥的领事馆,要求帮忙,这时,他们两人的表针都停在12点10分,而实际上,这天已是6月3日了。 像这种怪事,世界上已发现过多次,所以,引起了许多科学家的注意。
四维空间 是一个时空的概念。简单来说,任何具有四维的空间都可以被称为“四维空间”。不过,日常生活所提及的“四维空间”,大多数都是指爱因斯坦在他的《广义相对论》和《狭义相对论》中提及的“四维时空”概念。根据爱因斯坦的概念,我们的宇宙是由时间和空间构成。时空的关系,是在空间的架构上比普通三维空间的长、宽、高三条轴外又多了一条时间轴,而这条时间的轴是一条虚数值的轴。